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ABSTRACT
This paper describes a method to stabilize video for vehicular ap-
plications based on feature analysis. An investigation on camera
motion model is conducted. Harris features are extracted under the
proposed resolution adaptation scheme. Besides, features are de-
scribed with SURF-like descriptor. For feature matching, KD-tree
with best-bin-first search significantly reduces the matching time. A
damping filer is utilized to model and predict the unwanted oscilla-
tion. 93.1% correct rate in average is achieved in divergent driving
conditions. Only 0.114 second is required to process a frame at res-
olution 1280×960. The provided benchmark shows outperformance
of the proposed method.

Index Terms— Video stabilization, damping filter, KD-tree,
motion analysis, and feature extraction

1. INTRODUCTION

As vehicular safety systems become more and more popular these
years, many applications such as advanced driver assistance systems
(ADAS) are proposed to protect drivers from car accidents. Vehic-
ular video-based processing (VVP) is to provide a more intelligent
assistance and reduce the cost of the whole system. However, se-
vere oscillation may cause blur problems and result in low accuracy
of VVP . To eliminate the oscillation effects, video stabilization is
adopted as a preprocessing stage.

Video stabilization mainly relies on global motion estimation
(GME). GME attempts to estimate the global motion and separates
the motion into intentional motion (IM) and unwanted motion (UM).
By subtracting the UM, a stabilized video can be obtained from a
shaky condition.

Conventionally, video stabilization is used to solve jitter in
hand-held devices. In [1], camera motion is transformed into fre-
quency domain. UM belongs to higher frequency which can be
removed through frequency decomposition. Block-based solutions
are commonly employed to estimate global motion. For exam-
ple, motion vectors are utilized to estimate global motion through
Newton-Raphson’s method [2]. By analyzing the video content [3]
and choosing the proper processing resolution, the bulky compu-
tation of block-based approaches can be reduced. For high-speed
processing, extracting the edge and projecting the content from 2D
to 1D are proposed in literatures [4, 5]. Moreover, Kalman filter [6]
is applied to separate the estimated motion into UM and IM. SIFT
feature is gradually utilized for tracking moving background [7].
While in vehicular applications, these algorithms are either time-
consuming or degraded in accuracy. For this purpose, lane line
monitoring [8] utilizes lane lines and the vanishing point to stabilize
video. However, it is restricted to the evidence of lane lines.

This paper is organized as follows. We briefly describe the char-
acteristics of camera motion in Sec. 2. Proposed methods are de-
tailed in Sec. 3. In Sec. 4, experimental results are discussed. The
contribution is summarized in Sec. 5.

2. CAMERA MOTION ANALYSIS

Knowing the camera motion is beneficial to construct a proper
motion model for the oscillation. Assume that the image plane is
parallel to XY plane with location Z = −F . Besides, the optical
axis is coincident with the Z-axis and the image formation is simply
described by the projection matrix in Eq. 1,

Π =

⎛
⎜⎝

−F 0 0 0
0 −F 0 0
0 0 −F 0
0 0 1 0

⎞
⎟⎠ (1)

I
′
= ΠI �→ (−Fα/γ,−Fβ/γ,−F, 1)T

(2)

where I = (α, β, γ, 1)T is denoted as the world homogeneous coor-

dinates of a point in 3D space and I
′

is the homogeneous coordinates
in 2D image plane.

Suppose that the optical axis is not coincident with Z-axis be-
cause of camera motion. The transformation matrix TM is used to
transform the optical axis to Z-axis. The inverse transform T−1

M

is applied on the world coordinates before I is projected to image
plane. Consequently, the new homogeneous coordinates in image

plane I
′′

is calculated by I
′′

= ΠT−1
M I .

Camera motion can be classified into two categories, rotational
motion and translational motion. For rotational motion around X-
axis (pitch), the overall projection is formulated as follows,

TMpitch =

⎛
⎜⎝

1 0 0 0
cos φ 1 − sin φ 0
sin φ 0 cos φ 0

0 0 0 1

⎞
⎟⎠ (3)

I
′′

= ΠT−1
Mpitch

I

= (−F (α cos φ − γ sin φ),−Fβ,
−F (α sin φ + γ cos φ), α sin φ + γ cos φ)T

(4)

When the rotation angle φ approaches zero, the difference be-

tween I
′

and I
′′

is given by,

I
′′ − I

′
= (Fφ, 0, 0, 0) (5)
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Hand-held Vehicle-mounted

Depth Insignificant, modeled Single model
variation as one motion model is not enough

Object
Insignificant

Different positions may
position have different motions

Motion
Frequency segregation

Not knowing the
separation frequency threshold

Table 1. Comparison of three primary factors on video stabilization
when camera is mounted on a hand-held or a vehicular platform.

The Eq. 5 reveals that the induced transformation Fφ in image
plane is like a translational displacement. This inference is also ap-
plied to Y -axis (yaw). If the camera is rotated along Z-axis (roll)
with angle φ, the same φ is observed in image plane.

As for translation, if a camera’s translational motion is (a, b, c)

in world coordinates. The displacement I
′′−I

′
in image plane is

computed by Eq. 6 and Eq. 7 accordingly,

I
′′

= (−F (α/γ − a/γ + O(αc/γ2)),
−F (β/γ − b/γ + O(βc/γ2)),−F, 1)T (6)

I
′′ − I ′ = −F (a/γ + O(αc/γ2),

b/γ + O(βc/γ2), 0, 0)
(7)

where γ is the distance between the observed point and the camera.
Therefore, from Eq. 7, unless the translational motion of camera is in
the order of γ, the introduced difference in image plane is insignif-
icant. This means the camera must be moved larger than 10 center
meters to get noticed during frame transition, which is not possible
in regular hand-held situations.

However, in vehicular applications, camera motion along Z-axis
c becomes large. From Eq. 7, if c is large, the position of the point (α

, β) becomes a dominant factor in forming the displacement I
′′−I

′
.

In addition, points with different depth γ introduce different mo-
tion vectors. The comparison between the hand-held and vehicle-
mounted video is shown in Table 1.

3. PROPOSED ALGORITHM

The algorithm flow is shown in Fig. 1. Firstly, current resolution
is down-sampled to the desired one by resolution adaptation. Sec-
ondly, Harris features with SURF-like descriptors are extracted from
the down-sampled frame after RGB-to-Gray color conversion. Fea-
ture points are matched by constructing KD-tree with best-bin-first
search. Lastly, through a damping filter, UM is subtracted from the
calculated global motion and the stabilized result is produced.

3.1. Resolution adaptation

Frames are processed under two resolutions, original full resolution
(R1) and subsampled lower resolution (R2). Every frame is initially
processed under R2 and the primary estimation is produced. If the
primary estimation is similar to the prediction from previous frame,
the result is passed to motion prediction stage as the final estimation,
otherwise, it generates a new estimation under full resolution.

From Eq. 7, points away from image center conduct larger dis-
placements in image plane when high-speed driving. Thus, the cen-
tral area provides a speed invariant and lower depth variation cir-
cumstance.
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Fig. 1. Block diagram of the proposed process.

3.2. Feature extraction and matching

Points are extracted as features by applying Harris matrix A de-
scribed in Eq.8.

A =

[
I2

x IxIy

IxIy I2
y

]
(8)

where Ix and Iy are denoted as partial derivatives. If both eigenval-
ues λ1 and λ2 of A are large, this point is claimed as a feature. Mc

in Eq. 9 is used to determine the values of eigenvalues.

Mc = λ1λ2 − κ(λ1 + λ2)
2

= det(A) − κ · trace2(A)
(9)

where κ is a tunable parameter ranging from 0.04 to 0.15. If Mc

is larger than a designed threshold η, it implies λ1 and λ2 are large
and features are decided accordingly. Lowering the value of η is to
increase the number of feature candidates. Miss matching caused by
inconsistent feature selection between frames is ultimately dimin-
ished.

Features are represented with the SURF-like [9] descriptor. An
extracted feature and its surrounding region form a descriptor vector
V . The surrounding region is further split into 2×2 sub-regions with
a sub-region descriptor v illustrated in Fig. 2(a). For each sub-region,
Haar wavelet responses are computed in horizontal direction (dx)
and vertical direction (dy). Afterwards, the wavelet responses are
summed up and form a set of entries to v. Absolute values are also
calculated to bring in the polarity of the intensity changes. Hence,
each sub-region has a four-dimensional descriptor vector v described
in Eq. 10. Examples are shown in Fig. 2(b). This results in a full
descriptor vector V with 16 dimensions for one feature.

v = (
∑

dx,
∑

dy,
∑

|dx|,
∑

|dy|) (10)

The feature descriptors of the previous frame is clustered by
building KD-tree. Every entry represents a dimension in the K-entry
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Fig. 2. (a) Descriptor vector V is composed of four sub-regions’
vectors v1,v2,v3, and v4. (b) Sub-region descriptor illustrations.

tree structure. A feature is then randomly selected to be the par-
tition node. In all descriptors of selected features, the separating
dimension with the largest deviation is chosen from the 16 entries
(dimensions) of V .

Each feature extracted from the current frame traverses the built
KD-tree to find its corresponding point with best-bin-first search.
The feature flow field is constructed when all feature points are
matched.

3.3. Global motion processing

Global motion processing consists of three modules, motion estima-
tion, motion prediction, and motion separation. For motion estima-
tion, Eq. 11 states that the translational component is the average of
the sampled feature motion vectors (FMV). A FMV stands for the
displacement between the two matched features.

MEx =
1

N

N∑
i=1

FMV xi , MEy =
1

N

N∑
i=1

FMV yi (11)

where N is the total number of FMV in the feature flow field.
In motion prediction, a damping filter is proposed to model the

UM as a damping spring described in Eq. 12.

UM(f) = OAexp(
2ξπf

TF
) cos(

2πf

TF
+ ψ) (12)

where UM(f) is denoted as the function of unwanted oscillation at
a certain frame f and OA is the maximum oscillating amplitude ap-
peared in image plane of an oscillation. ξ is the damping coefficient,
ψ is the initial condition of each oscillation, and TF is denoted as the
damping period in terms of frame number. ξ and TF are dependent
on the vehicles’ shock absorbers. These parameters are automat-
ically generated after experiencing an initial oscillation. Through
modeling the UM, global motion (GM) is separated and refined to
only intentional fraction, which suggests a stabilized video.

4. EXPERIMENTS

The program is run on a PC with Pentium IV 2.8GHz CPU equipped.
The original resolution of video sequences is 1280×960. Different
environments are tested, including highway, tunnel, and complicated
city streets. There are more than 500 frames in each case. Processing
resolution R1 is 1280×960, while R2 is 320×240. Correct estima-
tion is defined as 1 pixel tolerance between the estimation and the
ground truth.

For feature matching, the advantage of KD-tree is reducing the
number of feature it has to search. The efficiency is evaluated by
measuring the average percentage of searched features (traversed
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Fig. 3. Computation time in different maximum number of search
bins. The blue points indicates the corresponding percentage of
searched features in a KD-tree.
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Fig. 4. Correct rate of different maximum search bins. The green
line marks the equal processing time boundary and the red line marks
the equal accuracy bounday.

nodes) and the processing time per frame. The major factor in-
fluencing the searched feature percentage is the maximum number
of search bins (MNSB). MNSB defines the maximum number of
bins when a feature traverses its corresponding node in KD-tree. As
shown in Fig. 3, the computational time and the percentage of tra-
versed nodes are positively proportional to MNSB.

On the other hand, linear search is a straightforward baseline
strategy. It leaves out the time to construct the KD-tree. In Fig. 4, the
black curve describes the correct rate in different MNSB. The green
line marks the bounday where linear search and KD-tree spend the
same processing time. The red line highlights the boundary where
both achieve equal correct rate. The result reveals that the ordinary
KD-tree without enhancement takes more time to reach the same
correct rate of linear search. However, with best-bin-first search,
correct rate quickly attains 92% at MNSB = 4. Only 3.7% of fea-
tures are traversed and the computational time is reduced by 84%
compared to linear search. Fig. 5 shows the processing time com-
parison between several approaches. The proposed method unrolls
the exceptional performance in reducing computational efforts.

An example of motion separation is shown in Fig. 6. Estimated
motion (blue line) is divided into IM (green line) and UM (red line)
by using the damping filter. Oscillation period TF is initialized to 20
frames. It differs from variant kinds of cars’ shock absorbers and is
adjustable. With resolution adaptation, computation time is reduced
more than 60% while only 1.4% drop in correct rate compared to
full-frame processing.
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Fig. 5. Computation time of different algorithms.
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Fig. 6. Motion separation using damping filter. TF is equal to 20
with ξ is 0.025.

Four state-of-the-arts are benchmarked and listed below.

M1: Pixel-based diamond search

M2: Curve warping [4]

M3: Motion vector field with Newton-Raphson’s method [2]

M4: Lane line and vanishing point stabilization [8]

In Table 2, all algorithms claim about 90% correct rate in high-
way. However, some shortages appeared in other conditions. In
tunnel and city street, 1D information (M2) is insufficient to achieve
high accuracy. Large homogeneous area like tunnel degrades the
performance of pixel-based diamond search (M1) and motion vector
field (M3). Vanishing point-based (M4) stabilization can be only ap-
plied to conditions with clear lane lines. For computational time
analysis, the proposed method attains 0.114 second to process a
frame. Conventional pixel-based approaches (M1) and block-based
motion vector (M3) are slower than other approaches. Curve warp-
ing (M2) is the fastest by processing frame in 1D, but only 50% in
correct rate is achieved. At last, examples of the proposed video
stabilization are shown in Fig. 7.

5. CONCLUSIONS

We present an efficient video stabilization method targeted at vehic-
ular applications. Resolution adaptation accelerates the stabilization
procedure. SURF-like descriptors enhance the robustness of Harris

Methods
Correct rate (%) Processing time

Highway Tunnel City street per frame (s)

M1 97.4 53.71 92.65 8.27

M2 89.74 46.3 40.32 0.0322

M3 94.85 52.26 91.26 4.69

M4 95.4 N/A N/A 0.8

Proposed 95.17 91.4 92.31 0.114

Table 2. Comparison between different methods.

Fig. 7. Examples for video stabilization. Left columns are origi-
nal four consecutive frames during oscillation. Right columns are
corresponding stabilized results.

features. Constructing KD-tree with best-bin-first search greatly de-
creases the computation time in feature matching. A damping filter
is utilized to remove unwanted oscillation calculated from feature
motions. Results show the identical accuracy under different condi-
tions and report decent performance.
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